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Injection and Diffusion of

Holes and Electrons in a Semiconductor(l)

by
Harvey Brooks
Cruft Laboratory
Harvard University
Cambridge, Massachusetts
Abstract

The basic equations for the flow of electrons and holes
in a semiconductor are presented and discussed. A small sig-
nal transient solution for an injected pulse of holes is ob-
tained which 1c¢ applicable to semiconductors which are intrinsic
or nearly so, as well as to ordinary n and p types. Three
conditions for the validity of the 3small siznal solution are
derived and discussed. In particular, a criterion for the va-
14dity of the assumption of space-charge neutrality 1s dis-
cussed in detall. A second approximation to take Into account
the veginning of nonlinear effects for large injected pulses
is also derived and discussed. Finally, the theory of conduc-
tivity pulses due to injected carriers in a filament 1s dis-
cussed in tle light of the preceding theory, and it is shown
that the apparent yuantum efficlency for photoconductivity in
an intrinsic semiconductor can become very much larcer than
b + 1, where b i3 the mobility ratio.

I.

The Basic: Equations
Jsing the mass-action law for recomnbination the diffusion

of carriers in a hormogeneosus semiconductor may be described by
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the following system of equations:‘z)

2

on _ -n2) + 8 3°n
st = TP = ny) *gg (4RE) + D, (1.1)
” 2
ap . . -n %y - 2 (. 9
ot r(np n, ) 3% (hppE) + Dp ;;g (1.2)
dE 4ne
d—x _K (p - n + ne) (1’3)

where:
n = local density of electrons
P = local density of holes
Ao s pp = mobility of electrons and holes, respectively
Dn’ Dp = diffuslon coefficient for electrons and holes,
respectively
E = local electric field intensity
X = macroscopic dielectric constant
Equation (1.1) is the conservation equation for electrons,
£q. (1.2) that for holes, and Eq. (1.3) i1s Poisson's equation.
In this report we consider only the one-dimensional problem,
so that quantities n, p, and E, constitutling the dependent var-
iables, depend only on the single space cogrdinate Xe

In this report we shall consider solutions of the Eqs. (1.1l),
(1.2), and (1.3) which sre applicable to an infinite homogen-
eous medium, or to cases in which boundary conditions can be
neglected. In particular, we shall be concerned with solutions
corresponding to the injection of a pulse of minority carriers
at the plane x = 0 and time t = 0 -~-the so-called indicial
solutions. Since the system cannot be solved rigorously for
arbitrary injected densities, we shall be concerned principally
with small~-3igral solutions and the conditicns of their va-
lidity.

‘ \
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II.

Simplification of the Basic Egquations

Subtracting (1.2) from (l.1) we have the following rela-
tion:

2
ﬂ—g (2.1)

2
-g‘g(n-p)--a— [(unn-*/tpp)E] +Dn&1“--D

ax dx P 9k
Substituting for %%-from (1.3) EQ. (2.1) can be put in
the form:
Hn + pp
—@.. - = _L + 4"0( n P ) - +
5 (n - p) = E o= (un upp) + (p = n+n.)
82n 2
+ D V—Z-Dpﬁ—g (2.2)
ax éx

In Eq. (2.2) the coefficient of (p - n + ne) i1s the
reciprocal of the natural relaxation time:

1 . 4ne
z K

o (2.3)

where ¢ 13 the conductivity. Except for very steep pulses,
this quantity 1= sucn that the corresponding term in (2.2) is
extrrmely large compared with the remaining terms unless:

p-n+ ng = o, (2.4)

1.6., electrical neutrality obtains throughout the region.

The significance of Eq. (2.4) may be seen in another
rather simple manner. First integrate Eq. (1.3) from - o to
+ o, obtalning:
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+
4ne
E+-E_-T7(p-n+ne)dx, (2.5)

-Q0

where E, and E_ are the values of the electric field at + oo
and - © , and the right side of (2.5) now depends only on
time. Next integrate (2.1) from - oo to + oo taking into
account (2.5) and the fact that the semiconductor assumes its
e¢ullibrium properties at sufficiently large distances from
the injection point at x = 0. Then we obtain:

3G 4n¢ro +oe

3 - O H G = (p - n ¢ ne) dx (2.6)
where o, = e(uhno + uppo)

n,, Py = electron and hole densities at + w

Equation (2.6) has the solution:

t

T

G=0, e P (2.7)

Thus an initial deviation from electrical neutrality disappears
rapidly with the time constant given by Eq. (2.3). A more
precise criterion will be derived below.

If we now assume the condition of neutrality, Eq. (2.4);
EQe. (2.1) reduces to:

2 - K I - (2.
X {(,unn + /tpp)E + (D, Dp) ax} o, {2.8)
which may be integrated immediately, giving:

3P . -
(mn + 4 p)E + (D, - D) F2=1/e, (2.9)

where I, an integration constant which may depend on time,
has the physical interpretetion of the tcotal current density.
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Next, we divide Eq. (1.1) by #ns EQ. (1.2) by P and
add, assuming space-charge neutrality.

1 1 2 1 1
() [BBrrme-n] -2 (3-1)8
+k’1‘1+laz
@ \n 3;5(2.10)

where we have made use of the Einstein relation to obtain the
last term. Solving (2.9) for E and substituting into Eq. (2.10)
we can obtain an equation which involves only p as the

dependent variable. This 1is:

- - 2
2R 4+ »(np-n,®) - - L1 (n-p) a4y 2L + (n=p ) o (D_-D_) /12)
at i e (‘ﬁp+”ppj2 ax (ﬂhn+#ppjz> n "p’ \3x
(n+p)ﬂnﬂ kT 8°
+ 1—_‘Hn+ppp ry a—xg' (2.11)

Equation (2.11) may be rvewrittan in somewhat simpler form
by noting that:

- -
ﬁ&fﬁ_ 2 I(n-p) + (n p)(Dp ) ap
Fn* 1y BX e(ﬁnn*/tpp) (ﬂnnﬂtpp) ax
. I(n-p)/zn/tE 2B . (n=p) (D, =Dl by (o2
e(un+up)c 3% (un+ip)® s
H pt’ n /p
(D'P)(ﬂp"#n) Fo H KT 92 ,
YT e (4n¥ipl o (2.12)
“p Y n P ax

The first two terms on the right of Eq. (2.12) are the same as
the first two terms on the right of (2.11). Thus, comparison
of (2.11) and (2.12) leads to the follcwing result:

sl Tale R0 s r
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I/e - (b=-1)D_ 2B
8p . _ -n 2 1 98 P_3X
e r [p(pme) n, } * 54T 5x ) +b;T_2_
ne
+ 22 p —5—82 (2.13)
b+l "p oy )

where we havc used the neutrality condition to express n in
terms of p. In this equation:
b = ﬂh/ﬂp = ratio of mobility of electrons to holes.

It is Interestins to note that if the sample i1s intrinsic,
corresponding to n, = 0, the sezond term on the richt of (2.13)
vanishes, and the equation becomes liaear except for the
recombination term. In this case the effective diffusion
coefficient 1s given by:

Pz ol 2
E 2o Ut Tl i g B!
Dp Dn
If we set ip = 0 in Eq. (2.13) and neglect recombination,
the result is identical with thet previously derived by Herring

and quoted in Shockley's book (Eqs. 6 and 7,R3Z9).

It is evidently possible to include the last term in
Eq. (2.13) in the brackets. When this is done, the equation
takes the simple form:

2 P
I/e(b+l) + (1 + f) D -g}:—

ap . - - n,? 2
4t = -r[ p(p+n ) - 0,71+ =% L + 5L P
ne

(2.15)

Equation (2.15) is rigorous except {or the assumption of
the neutrality conditicn and the mass actlon recombination law.
It 1s not possible to solve in this most general form because
of its nonlinearity.
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III.

Approximate Solutions of the Basic Equations

In order to solve (2.15), we acsume
p'po+p1’
where P, is the equilibrium hole density, and expand the quan-

tity in'brackets of (2.15) as a Taylor Series in Py - In this
way we obtain:

1+ %P
2 1/e(b+1 ki T N
ax p e "l p p 3ax
b+l "o p b+l "o
R [1+—b*1—9] "% a
e b 5 e
b+1 2 b-1 2
, L (T/ed HE  (hY) z5 1, P
3 ng N b4 n, P 8x3
1 + 21 P 1 + 821 %
b ng, b n,

(3.1)
The last two terms in brackets are of second order compared

with the first three. For example, the ratio of the fourth to

the second term ia:(s)

b+l Py Y e X!

b It T up

an
b po n o po

+

This ratio 1s jus®* the local percentage enhancement of con-
ductivity due to the sxtra carriers. Provided the ratio 1is
everywhere small, we are justified in dropping the fourth term.
Similarly the ratio of the fifth to third term may be written:(s)
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(“"n+ ”p)pl b-1 %6~ Po

. <<l
Hno* ”ppo b";Tno"' Py

(3 03)

Equation (3.3) 1o always a weaker condition than (3.2) since
the second factor is smaller than unity.

%= can thus obtain an approximate solution of (2.15) by
dropping the last two terms in the brackets of (3.1) The
recombination term must also be linsarized by neglecting terms

2
of order Py - Thus:

2 2
p(p +n, ) ~n,~ = p;” + py(n, +p ) =p(n, +p ),
5 Z.4)
1
provided :—_’_?o- <<]) .

The condition (3.4) 1s of about the same stringency as (3.2).
Using the three approximations (3.2), (3.3), and (3.4) Eq. (2.15)
may be written in the simple linear form:

ap p ap aep
TTCF AEE D (5.8)
% ax
where L = r(n + p_)
. T o o)
p
E I I !
= - ] I
o ( b+l po) 6(”nno+ #pp07$
eun (1 + —/ —
ne b
e
73 n -p
u' = P = “o po (3.6)
[ t+l po] “o o
1 + -2 R TE
bo
1+ —
G n +p
D' = € - = 22
b+l Yo ] P By, Po
1+ === - 7 + o
v MeJ up n J
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Wwhen n > > P> #'—rﬂp and D'—o-Dp, while if P, >>n_, ,u'—’-/zn
and D\—a-Dn, as would be expected from physical arguments.

It 1s interesting to observe that 1f we substitute the
actral local densities n and p in the definitions of x' and D!,
so that x' and D' become spatially varying functions, then the
rigorous equaticn (2.15) can be written in terms of x' and D!
as follows:

ap - . -n. 2 8 I _ 4 ap
at r(np Ny )+ ) gn+ ﬂp + D! 9x (3.7)

Returning to Eq. (3.5), we find fcr this the "indicial"

solution: . 2
) (x - & Eot)

t
Q T =~ 4ap't
pl = —>___ o P e (308)

yanD't

where Q 13 the number of excess carriers introduced per unit

cross section area at t = 0, x = 0. The solution (3.8) 1is
formally 1dentical with that usually given for the Haynes
experiment(4), except that the mobility and diffusion
ccefficl’ents are replaced by their effective values. The so-

lution (3.8) always violates the conditions (3.2), (3.3), and
(3.4) for sufficlently small t. However, in practice we can
never inject an infinitely short pulse of carriers. If we
irject a Caussian pulse of the form:

I(x,t) = 6(t) . e ) ;D'to (3.9)

V4WD'to

so that the total number of injected carriers is still Q, the
solution 18 precisely of the form (3.8), with
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-t (x-/t'Eot)za
- Q e P o ADT(EACT (3.10)
VanD! (t+t )

P

t> 0

Hers todefines the spatial extension of the original injection.
Under such conditions (3.10) is valid at all times provided

everywhere satisfies condition (3.2).
Iv.

The Second Approximation

Returning to Eq. (3.1}, it is possible to take into
account the correction terms by substituting the solution (3.8)
for the terms which are quadratic in Py and treating these terms
as & known source function for the linear differential equation
(3.5)¢ In this treatment the integrals can only be evaluated
as elementary functions if we neglect the recombination term
in (3.5), which we shall accordingly do. The rather involved
algebra 1s exhibited in Appendix A. We can express the final
result in the following way. The complete solution for p 1s

given by:

p= p°+p1+p2 (4.1)

where p, is the solution (3.8) and Py is given by:




P Q1 a0 | pe sEvAD'E T g (S
P vanD! not P, ”p L kT AD't

Lol s vw ( S _-_1_.-‘{1"5]
Japre ) “

= - '
S X i Eot

n

2
2 -t
Erf(x) = — dt
x | ()

The first term in the brackets is odd in S and thus gives
rise to a correction which makes the pulse unsymmetricsal, the
asymmetry belng such as to shift the maximum to negative values
of 3. On the time axis, for a fixed x, (which is what is ob-
served on an oscilloscope in the Haynes experimenc), the max-
imum of the pulse i1s shifted towards longer times as the inten-
sity of the pulse is increased. The second term in brackets
is even in S and so leads to no shift in the maximum but only
a symmetrical change of share.

For small (S/y/4D't), i.e., near the center of the pulse,
the bracketed expression in (4.2) may be written:

SR Wl ne = W (- -8
{i b kT b 4 4D't (4.3)
For large argument tha corresponding expression is:
w {;oa EViDt 4 a
oy ) 7 -4)
J/4aD't

tha npper and lower signs applying, respectively, for positive
and negative S.

-
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According to (4.3), we can calculate that the maximum of
the distorted pulse occurs for

S = 2D't —= 1 4 24 "o (4.5)

y4nD't no+ Po “b L kT

or for fixed x

t v X L+ -8 1 D b4l (4.6)
e, /imbit Po* Po D ®
Q

The quantity i1s the maximum excess hole (or electron)

/4mD't
density at the center of the pulse. Thus the criterion for a
small correction term becomes:

S U WL Ml L™ <<l (4.7)
n,t* P, Dp b Balo* HoPo

This condition is identical with (3.2).

Equation (4.4) in conjunction with (4.2) shows that near
the wings of the pulse, i.e., for S/V/4D't >1, the field-
dependent term of (4.4) resulte in multiplyinc the amplitude
of Py by a factor

' aE Ju
1+ 3 4 D o (4.3)
o Po ”p
for negative 5 and dividing by the sumecousiunt factor Ior
positive S, thus msking the pulse steeper on its receding
edge and less steep on its advancing edge. Herring(s) has

given a simple physical interpretation of this effect in terms
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of the fact that the effective swesp field 1s lower in regions
of higher carrier density.

The second term in brackets of (4.2) is even in S and in
general leads to & blunting of the pulse. Fror small S the
second term is negative while for large S it becomes positive.
Physically this effect comes about becsuse near the center of
the pulse the semiconductor is more nearly intrinsic and there-
fore according to (3.6) the effective diffusion coefficient
1s larger near the center of the pulse than near the edges.
Hence the pulse spreads somewhat more rapidly than would be
indicated from the equilibrium diffusion constant. Alternatively,
in a case wrlere holes are the majority carriler, 4' changes sign
and the pulse 1s sharper than i1t would normally be, because the
extra holes required for space-charge neutralization inhibit
diffusion. Reference to Eq. (4.4) would suggest that effects
due to diffusion dominate the mobility effect if S 1s suffi-
clently large. The condition for this, however, is that:

b+l no+ po

S> 4
b n,= P,

i.e., at distances beyond the distance through which the pulse
has been swept by the field. Thus, in fact, the effect repre-
sented by (4.8) dominates the situation urder most conditions.

The factor (4.8) can be written approximately ir the form:

1
1+ P! 4 Ap! : [GE‘Z," n°+ o |2 (4.10)
st KoPo kT n,% Py

The correction term is to be compared with (4.7), and is seen
to provide a scmewhat more stringent condition, since the

factor in brackets 1s usually appreciably greater than unity.
In fact, the validity of the customary interpretation of the

e BN

s S




TR181 -14~

Haynes experiment Aepends upcn the ccndition that Lhe factor in
sguare bracxets 1is much greater than 1, as is demonstrated in
Appendix B. In a nonintrinsic experiment this factor is just

the ratio of the voltage difference between emitter and collector
point in the sweeping field to kT.

V.

The Neutrality Approximation

In EQ. (2.2) we saw that the term having the coefficient

éﬁg was dominant. We may obtain a measure of the degree of

violation of the neutrality conditiocrn by assuming p - n + L, = o

in the other terms of (2.2), which have ruch smasller coefficients.
We thus obtain:

2

K 3 )
(p~n¥n ) = - o= { (u + up)E 55— + (D - Dp) - }

Substituting for E in (5.1) from (2.9) we have:

(u+ v ) I (D - D )ut u) 2
. K A" P - -n_p~"™m "p
n-p-ng = g% {e(ﬂnm 7P (\‘3) AnTED (%ﬁ)

2
+ (D - Dp) ﬁ-g

ax

. K a3 | _ I + " Ppoap (5.2)
4ne a3x e_(unnﬂtppf ,annﬂtpp ax y

Comparing (5.2) witk (2.13) we obtain, neglectlng recombinstion:




TR181 -15-

2D D 2 7
i (R d) (e d-n] - es

In terms of the basic soluticn (3.8) expressed in terms
of S, Eq. (5.3) mav be written:

n~p=-n 2D D a2p g fnp athp
o K 1 1 np 1 1 - 1 1
= —_— o — t -
Py dreny (;n “ {;Dp* n P1 as? t 4% TBs at
S SRR S, ‘M T °Bo L b-1 |, _ 8° ]
4ne ‘' n + p_ o B * 2t KT b+l 2D't
1

+ .
L bn + p. g b+l ehoS . b- i 2 .
n_* p, 4not 2b KT 2o 2D't *

We see from Eq. (5.4) that the principal criterion of
neutrality i1s simply that

K
t)?t“’m-% (5.5)

or in practical units

t>> 0.885 Kp x 10°1% sec.

Since we are dealing with pulses whose length is measured 1in
microseccnds, we do not have to worry about neutraiity until
we have resistivities of the order of 108 ohm cm, of no prac-
tical importance in semiconductors. If one tvpe of carrier,
eg., holes, can be trapved, its effective mobiliity can become
extremely low, effectively increasing b in Eq. (5.4). Then b
is replaced by b/f, where f 13 the fraction of time a hole
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(2]
!

spends trapped, and the condition (5.5) becomes weakecned by

a factor 1/f on the right. Thus for [ = 10-% space-charge
questions again become important, and it acctually follows from
(5.4) that the neutrality condition is violated if either
carrier nas 1its mobility sufficiently reduced by trapping.

For Ge and 31 at room temperature (5.5) is satisfled by a
tremendous margin.

VI.

Photoconductivity Pulses (6)

Consider a filament with constant voltage ayplied along
it. The voltage drop may be obtained from Eq. (2.9), as:

- - ax _ - ap/sx
v, f Edx = j 2 - e(D,_ D(p)f X ax
D~-D
- dx _ . n_p fa_
=1 f o e /ln"’/l axfnCdx (6.1)

The integration over x is taken between electrodes. If we
assume that electrodes maintain equilibrium charge densities
in their vicinity, L.e., are ohmic in character, then it fol-
lows that ths second term on the right of (6.1) vanishes. For
small disturbences we have:

+

1 1 Ao 1 Hn ”g .

-— P emem— - B e - p » \602)
o g q? LA o, 2 1

where OB = gquilibrium conductlivity and p1 i1s the solution
(3.8) of the generalized diffusion equation (3.5). Using
(6.2) In (5.1) and transposing, we obtain:
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o \'4
I(6) = Vo + 2 G+ w) § fpldx , (6.3)

where L = length of the filament. The first term is the equi-
librium conduction current while the second teim is increment
of current arising from the injected carriers. More rigcrously,
12 3hould be not Eq. (3.8) but rather a modifiecd solution which
satisfies the boundary conditions P, = O at the ends of the
ilament. However, we may study the behavior qualitatively in
terms of (3.8) The second term in (6.3) may be approximated by:

L
fpldx- Qz oztz;,%-
Q
L (6.4)

1
= Q t > 5
,u‘Eo

Thus we have a current pulse which lasts until the excess
carriers ars swept to the electrcde, a well-known result which
applies 1if the lifetime 7, 1s sufficlently long. The totel
charge pulse 1s thus of order:

(o]
0

bt ou L

n 1

.19, (6.5)
wiere Q 1s the origlnally injected hole charge and L1 1s the
distance between the injection point and the collecting elec-
trode. According to (6.5) there is a charge amplification
given by:

T
bel Pt P 4

a= . = . . (606)
b n-p, "~ LT

In the nearly Jntrinsic case, with u' very smali and the
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diffusion length long compared with the dimensions of the
filament, we obtain:

evo L1

S I A

Eg b+l bno+ Py
L

. (6.7)
b no+ P,

For uniform illumination of the filemen%: this becomes:

Vs o+l PRt By

d =
6kT b no+ po

(6.8)

The conditicn for the validity of this expression is that:

eV L n +p
o 2 o o
T L5 -7, et

whence an upper 1limit to a is:

aa.Ill_ 1" Po b1

(6.10)
g ’
L n = P, b

which shows that (6.7) makes a smooth transition into (6.6) as
the sweeping voltage is increased.

Another cese of interest is that in which the diffusion
length is less than the distance to electrodes. Then Eq-. (C .7)
of the appendix leads to:

+
(ﬂh 4 )T

v
a= 22 TR, (6.11)

Provided recombination and trapping can be neglected, Eq. (6.8)
is applicable even when the filament 18 nearly an insulator.
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It theu becomes:

oV 2 .
Q- =2 ___)._(bgl , (6.12)

since the insulator becomes in effect an intrinsic semiconductor
in the 1lluminated region. Equation (6.12) showa that it is
possibie to have apparent quantum efficiencies substantially
greater than 1 in an intrinsic semiconductor or in a semi-
conductor which 1s made locally intrinsic by high radiation
intensity. Eq. (6.12) is only valid for an insulator, however,
1f electrons are free to flow into the conduction trand of

the insulator from the electrodes.
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Appendix A

From Eq. {(2.5) with 'g = oo and Eq. (3.1), the inhomo-
geneous linear d'fferential equation to be solved may be writ-
ten:

ap ap a2p
3t T - ME, 5}% + D' 3
- X (A.1)
[ b+l 2 b-1 2]
, 2 | {3/ () % 1, P
53X 3 Ny : e ng P 8xX ’
[1 L ol _9.] {1 , b*L _o]
b ne b ne

where Py i1s given by (3.8). Changing variables to:
= =8 |
S x i Eot
t' = D't

and making use cf the definitions of u' and D' in (3.5), Eq. (A.1l)
reduces to:

($+)

2 2 2
ap‘? _ ¢ 95 . —1"- 5_3_ l—E [‘:2 pl b+1 + D il } 8pl %-bl -‘
ot 52 D S i o} ‘f) ng b up ng po asS |

Treating the last term as a source, this eaquation has the
soluvtion:
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+ !
@® t _ (s-0 2
itT=-7)

p, = do dr (o,7) 1
2 f j‘ Z van(e! -7) °

-0 -0
(A.3)
p,2 oD, 2
A v 4 71 Db+l 1 271 b-1
Z( T,%) u, 3 ®o DT m, b + n,* b, 80 B

By a simple chenge of variable and one integration by parts,
Eq. (A.3) can be put in the form:

+00 t! | pr-
. 1 3T
P, = = do dt 1(S-o,t'-T) %—0
2 ’ fan? °°T
4 0 (A.4)
2
N eE ap 1
. _ ' L MU ~0o b+l 2 b-1 1 —
mith £{S-0LEI-T) = o [k—'r % M2 Tee | Bt Po
where we have used the relation:
n-p
! e () o I
Ar £ ———— \A.S)
D KT n ¥ p,

In Eq. (A.4) pl2 is understood to be expre~sed as a function
of the veriabtle S -0 and t'-7 as indicated--hence the change

In sign of the derivative term.

To simplify (A.4) still further we integrate the second
term by parts with respect to 0. The result is:

+c0 t!
a o=
P ek 2 -
g1 4 1 o b+l g b-l(l ) 0‘) it
p, = - —— o at + T e
2 ,up no+ P, [anT K b 27 2b \2T “.2

2 e (A.6)
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Writtern out explicitly thls integral becomes:

i i
TR .

Ao BT Py
+0 t!
E z
2 11 °E. b1 b-l( L) 3
- R do dz g ST(TEY [M‘ 5 %t = \I” g¢)| 2
- ‘0

We carry out the integration over 0 first, noting that:

2

2 2 2
(s=¢)® _ 1 tr+T(__ 2% S
& Z(t’-t) ~ dT tT=T ("' TF T S) t T (a.8)

Equation (A.8) suggestschanging the integration variable to:

1 ’t'*-t' 2T

a - —-——-S 5 -5- E'-T
2T T t+ % T g ViT+ T

Substituting (A.9) in (A.7) we may drop immedietely the terms
which are odd in ¥, and we are left with:

+co t!

2 =
. ' Q ti+z)
Py, = - L n+ P as dT e

o)
(o)
0
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The integration over % gives immediately:

t' 2

s
bowoat & | ar T ETEET
2 up no+ P, 4n
0
ES b1, p-1 (; . 82 ) |[trT _ax el
. —H‘T Es‘ tl..,«c, tl . T (t'+q2 .

To integrate (A.1l1) we next change the variable of integration
to

1
U3l +7

obtaining:

e €1
”p no+ po 2n

-usS

pz du e

N
3
0

>

(A

E S
. [°° .9%1-.92;—1- (1-2uSz)] S (A.12)

kT Jaut-1

Sti1l11l another change of variable 1is necessary to

v s 4ut -1

with this substitution (A.12) transforms once again to:
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The integration over % gives immediately:

g 2
2 [ S
o a ol & az " Z(ET T
2 ,up n°+ P, ) 4
0
\
BS b, b-1 , o _s® ) |[errz _ax
I e e Ul A B (e s (A-12)

To integrate (A.ll) we next change the variable of integration
to

obtaining:

Q 2

+
o Po el

3

]

[
[

1
? i
h
eE S
o b+l b-1 2 1
o e e g (1 - 2us )] —_— (A.12)
[ = o ¢4ut—1
Still another change of varisble is necessary to

v = 4ut - 1

with this substitution {iA.12) transforms once again to:




= TIRA

PR A SRl 2 =1
L4

g
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_ S 1 82
2 4t’ - =V
2 /zp no+ P 4ut?

°Fo% ot , b-1 () 8B &P dv
‘Tx? v 0 2©% 2tT T 2t7 o172

eV
2 g?
Finalily changing to x = ZET'V » We hove:
s S
T AT '
o - - u' Q2 o 4t 1 evt dx e_xz
2 ”P no+ P, vartr Vo j
o]

eE
b+l S b-1 b-11 e
'[E?OT‘WT*’ZF§(1‘2X ’]

-4

(A.13)

(A.14)

The result (4.2) follows immediately by integration of (A.l4).




TR12]) 25-

bt R

Appendix B

Consider the sonlution (3.8). In normal cperation of the

Haynes experiment the maximum of the pulse 18 determined from
the condition:

r—' 0] (Bol)

This leads to:

2
-t ) ' -
(x=it Eot, ] Eo(x u'Eot)

1
+ - + — =0 (B.2)
4D't§ 4D't

2t

vcﬂlb—‘

Let tuls be solved by

1 (Be3)

where tl is treated as first-order small. The=n we have:

#'E u'E 2 (u'E )2
- 0 +1l{_o t. - 1, o (-u'E_)t, = 0
2x 2\ x 1 ﬁ: 4DTx o’ "l
o P
x
—Zpr - 1

The mobility is usually estimat-d from (B.3) wita tl = 0.
The correction term in (B-4) 13 negligible only 1if

2x
i1s not >>7
AE;, 07 P




L

W

4'E x eE x n - p
o o o 0

and — = >>1 . (B.5)
2D kT no+ P,

The left-hand side of the inequality i1s the same sas the mult-
iplying factor in (4.10). It 1is interesting to observe that
if we combine the (4.6) and (B.5) correcticns we obtain:

+ u +
R S S * ffp“’m-wn_o__&]
HR 7 -
A =g ”hno+ ”ppo Gon Mo~ Po
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Appendix C

We assume that injection occurs at x = QO and label the
reglon x>0 with subscript 1 and to the left with subscript 2.

@
The quantity .f pldt satisfles the steady-state diffusion

(o}
equation and so has ths general solution:

-p,x P,X
x>0 Ao 1 +Be?

x<0 B,e

(C.1)

Boundary conditions at the electrodes and at x = O give the
following relations:




-~
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From these relations we obtain:

-(py+ p, )L
. - 1 P2l
Bl Ale
-{p,+ p, )L
. - 1” Pa2ib2
B, Ay
- eyt PRl (C.6)
hp = (57 0,00 M
1 - 1 P2t
-(py ¢ p,iL
Al = 1 1-¢ L 22
T ¢ S -y
1 D' " ptpy . (P, ¥+ P, 1L, + L0
+L1
) Q 1
Apdx = = . ——
D' ° p,P,
-Lz S
- L ch -pL "pL
-pL)( -pL) PyLy zz( 21)( 1L2)
(l-e 171 1l-0 272 -0 e l-0 l-0 /
* -{p,*+ p,)(L{+ L)
L - o 17 P2liMT e
(/ - - \ /
p, L (pu -p, i )( -p,L )
i QTJ(° 1 1_1) e 2 "i-;l_) - 12 2™ 172 (c.7)
PyL; P,L -p
L o 171 272 _ "1t Pol |
If L, >> L, or p,L, >>1 Eq. (Ce7) reduces to:
qt (1 ~e¢ 11) (C.8)
2p' \ %
If WE  >> —=— 2 , we have:
1 N
pl -ﬂ'EOZ O (uog)
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L
For 27%75”<<:1’ we obtain the result (6.6, directly.

(o)

Another result of interest occurs when both plL1 and szz

may be regarded as small. This occurs in the nearly intrinsic
case. Then the bracket in (C.7) reducss to

L.L

Substitution in (6.3) results in Eq. (6.7).
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Footnotes

Results very similar to these have been derived independ-
ertly by W. Van Roosbroek, to be published in Bell Syst.
Tech. J. I am indeoted to Dr. Van Rcosbroek for several
v7aluable discussions and for a pre-publication copy of his
nanuscript. These results were reported by the present

author at the Cambridge meseting or the American Physical
Society, January, 1953.

Various forms of thece equations are discussed in W. Van
Roosbroek, Bell Syst. Tech. J. 29 (4), 560 (1950), also dby:
W. Shockley, Electrons and Holes in Semiconductors, Van
Nostrand (1950), pp. 318-320.

This criterion 13 also -iven in reference (1,.
J. R. Haynes and W. Shockley. Phys. Rev. 75, 691 (1949;.

C. Herring, Bell Syst. Tecn. J. 28, 401 (1949) or Monograph No.
1726, p. 67. =

Cf. also W. Van Roosbroek, J. App. Phys. 23, 1411 (1952)
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